Dietary intake of live microbes mitigates the mortality risk associated with sedentary behavior in US hypertensive individuals

0
Dietary intake of live microbes mitigates the mortality risk associated with sedentary behavior in US hypertensive individuals
  • Zhou, B., Perel, P., Mensah, G. A. & Ezzati, M. Global epidemiology, health burden and effective interventions for elevated blood pressure and hypertension. Nat. Rev. Cardiol. 18, 785–802. (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • World Health Organization. Global Report on Hypertension: The Race Against a Silent Killer (World Health Organization, 2023).

    Google Scholar 

  • Bailey, D. P. Sedentary behaviour in the workplace: Prevalence, health implications and interventions. Br. Med. Bull. 137, 42–50. (2021).

    Article 
    PubMed 

    Google Scholar 

  • Babey, S. H., Hastert, T. A. & Wolstein, J. Adolescent sedentary behaviors: Correlates differ for television viewing and computer use. J. Adolesc. Health. 52, 70–76. (2013).

    Article 
    PubMed 

    Google Scholar 

  • Hermelink, R. et al. Sedentary behavior and cancer—an umbrella review and meta-analysis. Eur. J. Epidemiol. 37, 447–460. (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, X., Ma, H., Zhou, T. & Qi, L. Replacing sedentary behavior time with physical activities, recommended physical activity, and incident coronary heart disease. Mayo Clin. Proc. 98, 111–121. (2023).

    Article 
    PubMed 

    Google Scholar 

  • van Deel, E. D., Octavia, Y., de Waard, M. C., de Boer, M. & Duncker, D. J. Exercise training has contrasting effects in myocardial infarction and pressure overload due to divergent endothelial nitric oxide synthase regulation. Int. J. Mol. Sci. 19, 1968. (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hasegawa, N. et al. Effects of different exercise modes on arterial stiffness and nitric oxide synthesis. Med. Sci. Sports Exerc. 50, 1177–1185. (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Engin, B. et al. Sedentary time is independently related to adipose tissue insulin resistance in adults with or at risk of type 2 diabetes. Med. Sci. Sports Exerc. 55, 1548–1554. (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • La Favor, J. D. et al. Microvascular endothelial dysfunction in sedentary, obese humans is mediated by NADPH oxidase: Influence of exercise training. Arterioscler. Thromb. Vasc. Biol. 36, 2412–2420. (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tjurin, P. et al. Cross-sectional associations of sedentary behavior and sitting with serum lipid biomarkers in midlife. Med. Sci. Sports Exerc. 54, 1261–1270. (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Subramanian, M. & Mueller, P. J. Altered differential control of sympathetic outflow following sedentary conditions: Role of subregional neuroplasticity in the RVLM. Front. Physiol. 7, 290. (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mueller, P. J. Influence of sedentary versus physically active conditions on regulation of plasma renin activity and vasopressin. Am. J. Physiol. Regul. Integr. Comp. Physiol. 295, R727–R732. (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Abenavoli, L. et al. Gut microbiota and obesity: A role for probiotics. Nutrients 11, 2690. (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Culp, E. J., Nelson, N. T., Verdegaal, A. A. & Goodman, A. L. Microbial transformation of dietary xenobiotics shapes gut microbiome composition. Cell 187, 6327-6345.e20. (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Liu, M. et al. Lipid-lowering, antihypertensive, and antithrombotic effects of nattokinase combined with red yeast rice in patients with stable coronary artery disease: A randomized, double-blinded, placebo-controlled trial. Front. Nutr. 11, 1380727. (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shah, A. B. et al. Probiotic significance of Lactobacillus strains: A comprehensive review on health impacts, research gaps, and future prospects. Gut. Microbes. 16, 2431643. (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • O’Donnell, J. A., Zheng, T., Meric, G. & Marques, F. Z. The gut microbiome and hypertension. Nat. Rev. Nephrol. 19, 153–167. (2023).

    Article 
    PubMed 

    Google Scholar 

  • Kyoung, J. & Yang, T. Depletion of the gut microbiota enhances the blood pressure-lowering effect of captopril: Implication of the gut microbiota in resistant hypertension. Hypertens Res. 45, 1505–1510. (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kong, C. Y. et al. Probiotic yogurt blunts the increase of blood pressure in spontaneously hypertensive rats via remodeling of the gut microbiota. Food Funct. 12, 9773–9783. (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gómez-Contreras, A. et al. Dietary intake of table olives exerts antihypertensive effects in association with changes in gut microbiota in spontaneously hypertensive rats. Food Funct. 14, 2793–2806. (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Młynarska, E. et al. Gut microbiota and gut-brain axis in hypertension: Implications for kidney and cardiovascular health-a narrative review. Nutrients 16, 4079. (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Qu, S. et al. Gut microbiota modulates neurotransmitter and gut-brain signaling. Microbiol. Res. 287, 127858. (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lai, H. et al. Effects of dietary fibers or probiotics on functional constipation symptoms and roles of gut microbiota: A double-blinded randomized placebo trial. Gut. Microbes. 15, 2197837. (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shen, F. et al. Ligilactobacillus acidipiscis YJ5 modulates the gut microbiota and produces beneficial metabolites to relieve constipation by enhancing the mucosal barrier. Food Funct. 15, 310–325. (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhu, W. et al. Priestia megaterium ASC-1 Isolated from pickled cabbage ameliorates hyperuricemia by degrading uric acid in rats. Microorganisms. 12, 832. (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Song, X. et al. The gut microbiota-brain axis: Role of the gut microbial metabolites of dietary food in obesity. Food Res. Int. 153, 110971. (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kim, D. W. et al. Effects of kimchi intake on the gut microbiota and metabolite profiles of high-fat-induced obese rats. Nutrients 16, 3095. (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Amato, K. R. et al. Variable responses of human and non-human primate gut microbiomes to a Western diet. Microbiome. 3, 53. (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gu, S. et al. The relationship between dietary intake of live microbes and insulin resistance among healthy adults in the US: A cross-sectional study from NHANES 2003–2020. Sci Rep. 14, 17666. (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huo, X. et al. Association of dietary live microbe intake with frailty in US adults: Evidence from NHANES. J. Nutr. Health Aging. 28, 100171. (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yan, K. et al. Higher dietary live microbe intake is associated with a lower risk of sarcopenia. Clin. Nutr. 43, 1675–1682. (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chang, Q. et al. Replacement of sedentary behavior with various physical activities and the risk of all-cause and cause-specific mortality. BMC Med. 22, 385. (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sun, Y. et al. Replacement of leisure-time sedentary behavior with various physical activities and the risk of dementia incidence and mortality: A prospective cohort study. J. Sport Health Sci. 12, 287–294. (2023).

    Article 
    PubMed 

    Google Scholar 

  • Xu, G., Ma, E., Zhang, W. & Feng, B. Association between healthy eating index-2015 total and metabolic associated fatty liver disease in Americans: A cross-sectional study with US. National health and nutrition examination survey. Front. Nutr. 11, 1427619. (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vukic, V. R. et al. In silico identification of milk antihypertensive di- and tripeptides involved in angiotensin I-converting enzyme inhibitory activity. Nutr. Res. 46, 22–30. (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yamamoto, N., Maeno, M. & Takano, T. Purification and characterization of an antihypertensive peptide from a yogurt-like product fermented by Lactobacillus helveticus CPN4. J. Dairy Sci. 82, 1388–1393. (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Xiong, R. G. et al. Health benefits and side effects of short-chain fatty acids. Foods. 11, 2863. (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Robles-Vera, I. et al. Protective effects of short-chain fatty acids on endothelial dysfunction induced by angiotensin II. Front. Physiol. 11, 277. (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Robles-Vera, I., Toral, M. & Duarte, J. Microbiota and hypertension: Role of the sympathetic nervous system and the immune system. Am. J. Hypertens. 33, 890–901. (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bartolomaeus, H. et al. Short-chain fatty acid propionate protects from hypertensive cardiovascular damage. Circulation 139, 1407–1421. (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Richards, E. M., Li, J., Stevens, B. R., Pepine, C. J. & Raizada, M. K. Gut microbiome and neuroinflammation in hypertension. Circ. Res. 130, 401–417. (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cheng, S. et al. The probiotic fermented milk of Lacticaseibacillus paracasei JY062 and Lactobacillus gasseri JM1 alleviates constipation via improving gastrointestinal motility and gut microbiota. J. Dairy Sci. 107, 1857–1876. (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rothman, A. M. et al. Effects of interleukin-1β Inhibition on blood pressure, incident hypertension, and residual inflammatory risk: A secondary analysis of CANTOS. Hypertension 75, 477–482. (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Aya, V., Flórez, A., Perez, L. & Ramírez, J. D. Association between physical activity and changes in intestinal microbiota composition: A systematic review. PLoS ONE 16, e0247039. (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Aya, V., Jimenez, P., Muñoz, E. & Ramírez, J. D. Effects of exercise and physical activity on gut microbiota composition and function in older adults: A systematic review. BMC Geriatr. 23, 364. (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pérez-Prieto, I., Plaza-Florido, A., Ubago-Guisado, E., Ortega, F. B. & Altmäe, S. Physical activity, sedentary behavior and microbiome: A systematic review and meta-analysis. J Sci Med Sport. 27, 793–804. (2024).

    Article 
    PubMed 

    Google Scholar 

  • Castellanos, N. et al. Key bacteria in the gut microbiota network for the transition between sedentary and active lifestyle. Microorganisms. 8, 785. (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xia, W. J. et al. Antihypertensive effects of exercise involve reshaping of gut microbiota and improvement of gut-brain axis in spontaneously hypertensive rat. Gut. Microbes. 13, 1–24. (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Carey, R. A. & Montag, D. Exploring the relationship between gut microbiota and exercise: Short-chain fatty acids and their role in metabolism. BMJ Open Sport Exerc. Med. 7, e000930. (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • van de Wouw, M. et al. Short-chain fatty acids: Microbial metabolites that alleviate stress-induced brain-gut axis alterations. J. Physiol. 596, 4923–4944. (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhu, Q., Jiang, S. & Du, G. Effects of exercise frequency on the gut microbiota in elderly individuals. Microbiologyopen. 9, e1053. (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mizoguchi, R. et al. Impact of gut microbiome on the renin-aldosterone system: Shika-machi super preventive health examination results. Hypertens. Res. 46, 2280–2292. (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li X, Xia Y, Song X, Xiong Z, Ai L, Wang G. Probiotics intervention for type 2 diabetes mellitus therapy: a review from proposed mechanisms to future prospects. Crit. Rev. Food Sci. Nutr. (2024): https://doi.org/10.1080/10408398.2024.2387765.

  • Pinkas, M. & Brzozowski, T. The role of the myokine irisin in the protection and carcinogenesis of the gastrointestinal tract. Antioxidants 13, 413. (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, C., Cai, Y. Y. & Yan, Z. X. Brain-derived neurotrophic factor preserves intestinal mucosal barrier function and alters gut microbiota in mice. Kaohsiung J. Med. Sci. 34, 134–141. (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Parsons, T. J. et al. Physical activity, sedentary behavior, and inflammatory and hemostatic markers in men. Med. Sci. Sports Exerc. 49(3), 459–465. (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lynch, G. M., Murphy, C. H., Castro, E. M. & Roche, H. M. Inflammation and metabolism: The role of adiposity in sarcopenic obesity. Proc. Nutr. Soc. 16, 1–13. (2020).

    Article 
    CAS 

    Google Scholar 

  • Tian, Z., Zhuang, X., Luo, M., Yin, W. & Xiong, L. The propionic acid and butyric acid in serum but not in feces are increased in patients with diarrhea-predominant irritable bowel syndrome. BMC Gastroenterol. 20, 73. (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kamath, P. S., Phillips, S. F. & Zinsmeister, A. R. Short-chain fatty acids stimulate ileal motility in humans. Gastroenterology 95, 1496–1502. (1988).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li, S. et al. Innovative beverage creation through symbiotic microbial communities inspired by traditional fermented beverages: Current status, challenges and future directions. Crit. Rev. Food Sci. Nutr. 64, 10456–10483. (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pyo, Y., Kwon, K. H. & Jung, Y. J. Probiotic functions in fermented foods: Anti-viral, immunomodulatory, and anti-cancer benefits. Foods. 13, 2386. (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • de Souza, H. F. et al. Water kefir in co-fermentation with Saccharomyces boulardii for the development of a new probiotic mead. Food Sci. Biotechnol. 33, 3299–3311. (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, L. et al. Traditional fermented soybean products: Processing, flavor formation, nutritional and biological activities. Crit. Rev. Food Sci. Nutr. 62, 1971–1989. (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cunha, S. C., Alves, R. N., Fernandes, J. O., Casal, S. & Marques, A. First approach to assess the bioaccessibility of bisphenol A in canned seafood. Food Chem. 232, 501–507. (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Franchi, C. et al. Inverse association between canned fish consumption and colorectal cancer risk: Analysis of two large case-control studies. Nutrients 14, 1663. (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yao, H. et al. Sex differences in association of healthy eating pattern with all-cause mortality and cardiovascular mortality. BMC Public Health 24, 2363. (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *